Automatic Generation of 3D Printed Reactionware for Chemical Synthesis Digitization using ChemSCAD

09 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Digital chemistry aims to define a hard link from the top abstraction layer in chemistry down to the synthesis, but this is difficult in traditional glassware since it is not possible to explicitly link the architecture with the unit operations. By 3D printing the synthesis modules in the precise order to affect the synthesis, it is possible to create digitally encoded reactors for chemical synthesis in ‘reactionware’. However, creation of these devices requires a specific skillset for CAD modelling which few synthetic chemists have. Herein, we describe an intuitive system, ChemSCAD, for the creation of digital reactor models based on the chemical operations, physical parameters and synthetic sequence to produce a given target compound. We demonstrate the ability of the ChemSCAD system to translate the gram-scale batch synthesis of the anti-viral compound Ribavirin (yield 43% over three steps), the narcolepsy drug Modafinil (yield 60% over three steps), and both batch and flow instances of the synthesis of the anti-cancer agent Lomustine (batch yield 65% over two steps) in purities ≥96%. The syntheses of compounds developed using the ChemSCAD system, including reactor designs and analytical data, can be stored in a single database repository where all the information necessary to critically evaluate, and improve upon, reactionware syntheses can be easily shared and versioned.

Keywords

Digital Chemistry
Reactionware
ChemSCAD
3D Printing Chemical Reactors

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.