Reinterpreting π-Stacking

07 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The nature of pi-pi interactions has long been debated. The term "pi-stacking" is considered by some to be a misnomer, in part because overlapping pi-electron densities are thought to incur steric repulsion, and the physical origins of the widely-encountered "slip-stacked" motif have variously been attributed to either sterics or electrostatics, in competition with dispersion. Here, we use quantum-mechanical energy decomposition analysis to investigate pi-pi interactions in supramolecular complexes of polycyclic aromatic hydrocarbons, ranging in size up to realistic models of graphene, and for comparison we perform the same analysis on stacked complexes of polycyclic saturated hydrocarbons, which are cyclohexane-based analogues of graphane. Our results help to explain the short-range structure of liquid hydrocarbons that is inferred from neutron scattering, trends in melting-point data, the interlayer separation of graphene sheets, and finally band gaps and observation of molecular plasmons in graphene nanoribbons. Analysis of intermolecular forces demonstrates that aromatic pi-pi interactions constitute a unique and fundamentally quantum-mechanical form of non-bonded interaction. Not only do stacked pi-pi architectures enhance dispersion, but quadrupolar electrostatic interactions that may be repulsive at long range are rendered attractive at the intermolecular distances that characterize pi-stacking, as a result of charge penetration effects. The planar geometries of aromatic sp2 carbon networks lead to attractive interactions that are "served up on a molecular pizza peel", and adoption of slip-stacked geometries minimizes steric (rather than electrostatic) repulsion. The slip-stacked motif therefore emerges not as a defect induced by electrostatic repulsion but rather as a natural outcome of a conformation landscape that is dominated by van der Waals interactions (dispersion plus Pauli repulsion), and is therefore fundamentally quantum-mechanical in its origins. This reinterpretation of the forces responsible for pi-stacking has important implications for the manner in which non-bonded interactions are modeled using classical force fields, and for rationalizing the prevalence of the slip-stacked pi-pi motif in protein crystal structures.

Keywords

Noncovalent Interactions
supramolecular chemistry
Dispersion Interactions
van der Waals Interactions
pi-pi stacking
Symmetry-Adapted Perturbation Theory

Supplementary materials

Title
Description
Actions
Title
pi-pi-stacking-SI zip
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.