A Single Point Mutation Converts a Proton-pumping Rhodopsin into a Turn-on Fluorescent Sensor for Chloride

06 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The visualization of chloride in living cells with fluorescent sensors is linked to our ability to design hosts that can overcome the energetic penalty of desolvation to bind chloride in water. Fluorescent proteins can be used as biological supramolecular hosts to address this fundamental challenge. Here, we showcase the power of protein engineering to convert the fluorescent proton-pumping rhodopsin GR from Gloeobacter violaceus into GR1, a turn-on fluorescent sensor for chloride in detergent micelles and in live Escherichia coli. This non-natural function was unlocked by mutating D121, which serves as the counterion to the protonated retinylidene Schiff base chromophore. Substitution from aspartate to valine at this position (D121V) creates a binding site for chloride. The addition of chloride tunes the pKa of the chromophore towards the protonated, fluorescent state to generate a pH-dependent response. Moreover, ion pumping assays combined with bulk fluorescence and single cell fluorescence microscopy experiments with E. coli, expressing a GR1 fusion with cyan fluorescent protein, show that GR1 does not pump ions nor sense membrane potential but instead provides a reversible, ratiometric readout of chloride. This discovery sets the stage to use natural and laboratory-guided evolution to build a family of rhodopsin fluorescent chloride sensors for cellular applications and learn how proteins can evolve and adapt to bind anions in water.

Keywords

Aqueous anion recognition
Biological supramolecular host
Protein engineering
Rhodopsin
Fluorescent protein sensor
Chloride sensor
Bacterial imaging

Supplementary materials

Title
Description
Actions
Title
GR1 Supporting Information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.