Rapid Survey of Nuclear Quadrupole Resonance by Broadband Excitation with Comb Modulation and Dual-Mode Acquisition

06 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Nuclear Quadrupole Resonance (NQR) provides spectra carrying information as to the electric-field gradient around nuclei with a spin quantum number I > 1/2 and offers helpful clues toward characterizing the electronic structure of materials of chemical interest. A major challenge in NQR is finding hitherto unknown resonance frequencies, which can scatter over a wide range, requiring time consuming repetitive measurements with stepwise frequency increments. Here, we report on an efficient, two-step NQR protocol by bringing rapid-scan and frequency-comb together. In the first step, wideband excitation and simultaneous signal acquisition, both realized by a non-adiabatic, frequency-swept hyperbolic secant (HS) pulse with comb modulation, offers a clue for the existence/absence of the resonance within the frequency region under investigation. When and only when the sign of the resonance has been detected, the second step is implemented to compensate the limited detection bandwidth of the first and to unambiguously determine the NQR frequency. We also study the spin dynamics under the comb-modulated HS pulse by numerical simulations, and experimentally demonstrate the feasibility of the proposed scheme, which is referred to as RApid-Scan with GApped excitation with Dual-mode Operation (RASGADO) NQR


Nuclear quadrupole resonance
Magnetic resonance spectroscopy/methods
comb modulation

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.