Evaluating the Fitness of Combinations of Adsorbents for Quantitative Gas Sensor Arrays

28 September 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Robust, high-performance gas sensing technology has applications in industrial process monitoring and control, air quality monitoring, food quality assessment, medical diagnosis, and security threat detection. Nanoporous materials (NPMs) could be utilized as recognition elements in a gas sensor because they selectively adsorb gas. Imitating mammalian olfaction, sensor arrays of NPMs use measurements of the adsorbed mass of gas in a set of distinct NPMs to infer the gas composition. Modular and adjustable NPMs, such as metal-organic frameworks (MOFs), offer a vast materials space to sample for combinations to comprise a sensor array that produces a response pattern rich with information about the gas composition.

Herein, we frame quantitative gas sensing, using arrays of NPMs, as an inverse problem, which equips us with a method to evaluate the fitness of a proposed combination of NPMs in a sensor array. While the (routine) forward problem is to use an adsorption model to predict the mass of gas adsorbed in the NPMs when immersed in a gas mixture of a given composition, the inverse problem is to predict the gas composition from the observed mass of adsorbed gas in each NPM. The fitness of a given combination of NPMs for gas sensing is then determined by the conditioning of its inverse problem: the prediction of the gas composition provided by a fit (unfit) combination of NPMs is insensitive (sensitive) to inevitable errors in the measurements of the mass of gas adsorbed in the NPMs. For illustration, we use experimentally measured adsorption data to analyze the conditioning of the inverse problem associated with a [IRMOF-1, HKUST-1] CH4/CO2 sensor array.

Keywords

sensors
gas sensing
sensor arrays
metal-organic frameworks
electronic nose

Supplementary materials

Title
Description
Actions
Title
mof sensing inverse problem SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.