Why Conventional Design Rules for C–H Activation Fail for Open-Shell Transition-Metal Catalysts

05 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The design of selective and active C–H activation catalysts for direct methane-to-methanol conversion is challenging. Bioinspired complexes that form high valent metal-oxo intermediates capable of hydrogen abstraction and rebound hydroxylation are promising candidates. This promise has made them a target for computational high-throughput screening, typically simplified through the use of linear free energy relationships (LFERs). However, their mid-row transition-metal centers have numerous accessible spin and oxidation states that increase the combinatorial scale of design efforts. Here, we carry out a computational design screen of over 2,500 mid-row 3d transition-metal complexes with four metals in numerous spin and oxidation states. We demonstrate the importance of spin/oxidation state in dictating design principles, limiting the generalization of strategies derived for widely studied high-spin Fe(II) catalysts to other metals or spin/oxidation states. Combined assessment of the effect of ligand field tuning on reaction step energetics and on the identity of the ground state allows us to propose refined design strategies for spin-allowed methane-to-methanol catalysis. We observed weak coupling of energetics and design principles between reaction steps (e.g., oxo-formation vs methanol release), meaning that LFERs do not generalize across our larger catalyst set. To rationalize relative reactivity in known catalysts, we instead compute independent reaction energies and propose strategies for further improvements in catalyst design.

Keywords

metal-oxo species
linear free energy relationships
computational catalyst design
density functional theory
spin-state dependent reactivity
C–H activation
methane conversion
oxidation states

Supplementary materials

Title
Description
Actions
Title
SI Me2MeOH v3
Description
Actions
Title
SI Me2MeOHData 091920
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.