Site-selective Protonation of the One-electron Reduced Cofactor in [FeFe]-Hydrogenase

16 September 2020, Version 3
This content is a preprint and has not undergone peer review at the time of posting.


Hydrogenases are microbial redox enzymes that catalyze H2 oxidation and proton reduction (H2 evolution). While all hydrogenases show high oxidation activities, the majority of [FeFe]-hydrogenases are excellent H2 evolution catalysts as well. Their active site cofactor comprises a [4Fe-4S] cluster covalently linked to a diiron site equipped with carbon monoxide and cyanide ligands that facilitate catalysis at low overpotential. Distinct proton transfer pathways connect the active site niche with the solvent, resulting in a non-trivial dependence of hydrogen turnover and bulk pH. To analyze the catalytic mechanism of [FeFe]-hydrogenase, we employ in situ infrared spectroscopy and infrared spectro-electrochemistry. Titrating the pH under H2 oxidation or H2 evolution conditions reveals the influence of site-selective protonation on the equilibrium of reduced cofactor states. Governed by pKa differences across the active site niche and proton transfer pathways, we find that individual electrons are stabilized either at the [4Fe-4S] cluster (alkaline pH values) or at the diiron site (acidic pH values). This observation is discussed in the context of the natural pH dependence of hydrogen turnover as catalyzed by [FeFe]-hydrogenase.


Infrared Spectroscopy
Proton-coupled Electron Transfer
Small Molecule Activation

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.