An Efficient and Accurate Model for Water with an Improved Non-Bonded Potential

23 September 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


A molecular mechanical model for liquid water is developed that uses a physically-motivated potential to represent Pauli repulsion and dispersion instead of the standard Lennard-Jones potential. The model has three-atomic sites and a virtual site located on the ∠HOH bisector (i.e., a TIP4P-type model). Pauli-repulsive interactions are represented using a Buckingham-type exponential decay potential. Dispersion interactions are represented by both and terms. This higher order dispersion term has been neglected by most force fields. The ForceBalance code was used to define parameters that optimally reproduce the experimental physical properties of liquid water. The resulting model is in good agreement with the experimental density, dielectric constant, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, diffusion coefficient, and radial distribution function. A GPU-accelerated implementation of this improved non-bonded potential can be employed in OpenMM without modification by using the CustomNonBondedForce feature. Efficient and automated parameterization of these non-bonded potentials provides a rational strategy to define a new molecular mechanical force field that treats repulsion and dispersion interactions more rigorously without major modifications to existing simulation codes or a substantially larger computational cost.


intermolecular potential
molecular dynamics
water model


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.