An Automatic Differentiation and Diagrammatic Notation Approach for Developing Analytical Gradients of Tensor Hyper-Contracted Electronic Structure Methods

25 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We show how the combination of automatic differentiation (AD) and diagrammatic notation can facilitate the development of analytical nuclear derivatives for tensor hyper-contraction based (THC) electronic structure methods. The automatically-derived gradients are guaranteed to have the same scaling in terms of both operation count and memory footprint as the underlying energy calculations, and the computation of a gradient is roughly three times as costly as the underlying energy. The new AD/diagrammatic approach enables the first cubic scaling implementation of nuclear derivatives for THC tensors fitted in molecular orbital basis (MO-THC). Furthermore, application of this new approach to THC-MP2 analytical gradients leads to an implementation which is at least four times faster than the previously reported, manually-derived implementation. Finally, we apply the new approach to the 14 tensor contraction patterns appearing in the supporting subspace formulation of multireference perturbation theory, laying the foundation for future developments of analytical nuclear gradients and nonadiabatic coupling vectors for multi-state CASPT2.

Keywords

Analytical gradient
Tensor Hyper-Contraction
Automatic Differentiation

Supplementary materials

Title
Description
Actions
Title
SI-DerivDiagram-Merged-v2
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.