A New Approach to Probe the Degradation of Fuel Catalysts Under Realistic Conditions: Combining Tests in a Gas Diffusion Electrode Setup with Small Angle X-Ray Scattering

16 September 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A new approach for efficiently investigating the degradation of fuel cell catalysts under realistic conditions is presented combining accelerated stress tests (ASTs) in a gas diffusion electrode (GDE) setup with small angle X-ray scattering (SAXS). GDE setups were recently introduced as a novel testing tool combining the advantages of classical electrochemical cells with a three-electrode setup and membrane electrode assemblies (MEAs). SAXS characterization of the catalyst layer enables an evaluation of the particle size distribution of the catalyst and its changes upon applying an AST. The straight-forward approach not only enables stability testing of fuel cell catalysts in a comparative and reproducible manner, it also allows mechanistic insights into the degradation mechanism. In contrast to standard rotating disk electrode measurements or identical location microscopy, typical metal loadings for proton exchange membrane fuel cells (PEMFCs), i.e. 0.2 mgPt cm-2geo, are applied in the GDE and the degradation of the overall (whole) catalyst layer is probed. For the first time, realistic degradation tests can be performed comparing a set of catalysts with several repeats within reasonable time. It is demonstrated that independent of the initial particle size in the pristine catalyst, for ASTs simulating load cycle conditions in a PEMFC, all catalysts degrade to a similar particle size distribution.

Keywords

Gas diffusion electrode
accelerated stress tests
Small Angle X-ray Scattering (SAXS)
Platinum Nanoparticle Catalysts
fuel cell catalyst testing

Supplementary materials

Title
Description
Actions
Title
Schröder et al. SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.