Mechanistic Understanding of Surface Migration Dynamics with DNA Walkers

23 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Dynamic DNA walkers can move cargoes on a surface through various mechanisms including enzymatic reactions and strand displacement. While they have demonstrated high processivity and speed, their motion dynamics are not well understood. Here, we utilize an enzyme-powered DNA walker as a model system and adopt a random walk model to provide new insight on migration dynamics. Four distinct migration modes (ballistic, Lévy, self-avoiding, and diffusive motions) are identified. Each mode shows unique step time and velocity distributions which are related to mean squared displacement (MSD) scaling. Experimental results are in excellent agreement with the theoretical predictions. With a better understanding of the dynamics, we performed a mechanistic study, elucidating the effects of cargo types and sizes, walker sequence designs, and environmental conditions. Finally, this study provides a set of design principles for tuning the behaviors of DNA walkers. The DNA walkers from this work could serve as a versatile platform for mathematical studies and open new opportunities for bioengineering.


DNA nanotechnology
DNA walker
random walk
surface migration

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.