CAP-EOM-CCSD Method with Smooth Voronoi CAP for Metastable Electronic States in Molecular Clusters

21 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The complex absorbing potential (CAP) approach offers a practical tool for characterization of energies and lifetimes of metastable electronic states, such as temporary anions and core ionized states. Here, we present an implementation of the smooth Voronoi CAP combined with equation-of-motion coupled cluster with single and double substitutions method for metastable states. The performance of the smooth Voronoi and a standard box CAPs is compared for different classes of systems: resonances in isolated molecules and in molecular clusters. The results of the benchmark calculations indicate that the choice of the CAP shape should be guided by the character of the metastable states. While Voronoi CAPs yield stable results in the case of a resonance localized on one molecule, their performance in the cases of states delocalized over two or more molecular species can deteriorate due to the CAP leaking into the vacuum region between the moieties.

Keywords

non-Hermitian quantum mechanics
metastable states
EOM-CC methods
complex absorption potential (CAP)
Molecular Clusters

Supplementary materials

Title
Description
Actions
Title
eom cc voronoi cap clusters gayvert SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.