A Quantum-Based Approach to Predict Primary Radiation Damage in Polymeric Networks

18 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Initial atomistic-level radiation damage in chemically reactive materials is thought to induce reaction cascades that can result in undesirable degradation of macroscale properties. Ensembles of quantum-based molecular dynamics (QMD) simulations can accurately predict these cascades, but extracting chemical insights from the many underlying trajectories is a labor-intensive process that can require substantial a priori intuition. We develop here a general and automated graph-based approach to extract all chemically distinct structures sampled in QMD simulations and apply our approach to predict primary radiation damage of polydimethylsiloxane (PDMS), the main constituent of silicones. A post-processing protocol is developed to identify underlying polymer backbone structures as connected components in QMD trajectories. These backbones form a repository of radiation-damaged structures. A scheme for extracting and updating a library of isomorphically distinct structures is proposed to identify the spanning set and aid chemical interpretation of the repository. The analyses are applied to ensembles of cascade QMD simulations in which the four element types in PDMS are selectively excited in primary knock-on atom events. Our approach reveals a much higher degree of combinatorial complexity in this system than was inferred through radiolysis experiments. Probabilities are extracted for radiation-induced network changes including formation of branch points, carbon linkages, cycles, bond scissions, and carbon uptake into the Si-O siloxane backbone network. The general analysis framework presented here is readily extendable to modeling chemical degradation of other polymers and molecular materials and provides a basis for future quantum-informed multiscale modeling of radiation damage.

Keywords

siloxanes
Radiation damage
graph theory
network analysis
Quantum Molecular Dynamics
Structure recognition

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.