In silico Antibody Mutagenesis for Optimizing its Binding to the Spike Protein of SARS-CoV-2

18 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic and there are currently no FDA approved medicines for treatment or prevention. Inspired by promising outcomes for convalescent plasma treatment, developing antibody drugs (biologics) to block SARS-CoV-2 infection has been the focus of drug discovery, along with tremendous efforts in repurposing small-molecule drugs. In the last several months, experimentally, many human neutralizing monoclonal antibodies (mAbs) were successfully extracted from plasma of recovered COVID-19 patients. Currently, several mAbs targeting the SARS-CoV-2's spike protein (Spro) are in clinical trials. With known atomic structures of mAb-Spro complex, it becomes possible to in silico investigate the molecular mechanism of mAb's binding with Spro and design more potent mAbs through protein mutagenesis studies, complementary to existing experimental efforts. Leveraging superb computing power nowadays, we propose a fully automated in silico protocol for quickly identifying possible mutations in a mAb (e.g.~CB6) to enhance its binding affinity with Spro for the design of more efficacious therapeutic mAbs.

Keywords

SARS-CoV-2
Spike Protein
antibodies

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.