Abstract
Uniform-spherical Pd nanoparticles (NPs) supported catalysts were prepared by a mild-temperature chemical reduction method. Pd colloidal suspension was wet-impregnated on various supports, P25-TiO2, SiO2, and γ-Al2O3. In XPS, asymmetric Pd 3d5/2 peak reveals % surface concentration of Pd2+ and Pd0 species. The surface Pd2+/Pd0 ratio on the catalyst surface varied between ~1 to 0.15 depending on strong-metal support interactions (SMSI) inferred from XPS and H2-TPR studies. A linear correlation between Pd2+/Pd0 ratio and turnover frequency (TOF) was observed, with 1% Pd/P25-TiO2 showing the highest TOF/selectivity with Pd2+/Pd0 ratio ~1.0, whereas 1% Pd/γ-Al2O3 showed the lowest TOF/selectivity with lowest Pd2+/Pd0 ratio 0.15. Interestingly, H2-TPR reveals PdH decomposition peaks along with the Ti4+ reduction peak, and XPS Ti 2p of 1% Pd/P25-TiO2 indicates the presence of Ti3+ in TiO2 lattice, which may have generated due to H2-spillover from Pd to P25-TiO2. Hence, we observed excellent COL selectivity (~90%) and 100 % conversion with 1.5% Pd/P25-TiO2 catalyst. Excellent COL selectivity may be ascribed to small Pd NPs (~3 nm) with intrinsic surface electropositive sites (Pd2+) created by partial reduction on the catalyst surface along with SMSI. These electropositive sites (Pd2+) promote preferential C=O adsorption. On the other hand, post-reduced catalyst in H2 @300 °C (1% Pd/P25-TiO2-PRH2) with large Pd NPs (~7 nm) showed significant selectivity loss (>50 %), which confirm significance of small Pd NPs with electropositive sites.