Polyvinylidene Difluoride: A Universal Binder for Preparation of Solid Phase Microextraction Devices

16 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The communication describes the application of a fluorocarbon-based polymer as a high performance binder component for coatings suitable for a variety of solid phase microextraction (SPME) configurations. SPME devices are characterized by their ability to perform physicochemical extraction of chemical compounds from a given sample, rending said chemical compounds suitable for instrumental determinations; fundamentally speaking, physiochemical extraction is accomplished by thermodynamic equilibrium driven by diffusion and partitioning of chemical compounds. A polyvinylidene difluoride (PVDF) polymer was used to immobilize various sorbent particles on different supports to create different formats of SPME, namely fiber, thin-film membrane, and CBS devices. In this report, PVDF-based coatings are introduced as universal SPME coatings that are amenable to both gas chromatography (GC) and liquid chromatography (LC) while also improving the physical stability of the resulting device, in addition to eliminating the need for highly toxic reagents associated with the preparation of fully fluorinated based coatings previously reported in the literature. Additional incorporation of other polymers to increase coating porosity as well as the adhesion of PVDF on metal surfaces is also described.

Keywords

polyvinylidene difluoride binder
solid phase micro extraction

Supplementary materials

Title
Description
Actions
Title
PVDFf
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.