Quantum Mechanics / Extremely Localized Molecular Orbital Embedding Strategy for Excited-States. 2. Coupling to the Equation-of-Motion Coupled Cluster Method

16 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Equation-of-Motion Coupled Cluster with single and double excitations (EOM-CCSD) is currently one of the most accurate quantum chemical methods for the investigation of excited-states, but its non-negligible computational cost unfortunately limits its application to small molecules. To extend its range of applicability, one possibility consists in its coupling with the so-called multi-scale embedding techniques. Along this line, in this work we propose the interface of the EOM-CCSD method with the recently developed quantum mechanics / extremely localized molecular orbital (QM/ELMO) strategy, an approach where the chemically relevant region of the investigated system is treated at fully quantum chemical level (QM region), while the remaining part (namely, the chemical environment) is described through transferred and frozen extremely localized molecular orbitals (ELMO subsystem). In order to determine capabilities and limitations of the novel EOM-CCSD/ELMO approach, some validation tests were properly designed and carried out. They indicated that the new approach is particularly useful and efficient in describing local electronic transitions in relatively large systems, for both covalently and non-covalently bonded QM and ELMO regions. In particular, it has been shown that, including only a limited number of atoms in the chemically active subunit, the ELMO-embedded computations enable the reproduction of excitation energies and oscillator strengths resulting from full EOM-CCSD calculations within the limit of chemical accuracy, but with a significantly reduced computational cost. Furthermore, despite the approximation of an embedding potential given by frozen extremely localized molecular orbitals, it was observed that the new strategy is able to satisfactorily account for the effects of the environment.

Keywords

excited-states
embedding techniques
QM/QM’ strategies
extremely localized molecular orbitals
Equation-of-Motion Coupled Cluster method

Supplementary materials

Title
Description
Actions
Title
Supporting Information EOM-CCSD-ELMO September15
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.