Organic Photostimulated Luminescence

16 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Photostimulated luminescence, which allows energy or data to be stored and released using electromagnetic waves as both the input and output, has attracted considerable interest in the fields of biomedical and informatics technologies, but this phenomenon is mostly limited to solid inorganic materials. Here, we report photostimulated luminescence from purely organic blend films composed of electron donor, acceptor, and trap/emitter molecules. In the films, charges are accumulated as radical ions by ultraviolet light irradiation and then extracted by near infrared light irradiation to produce visible light. Films are capable of multiple cycles (>10 times) of organic photostimulated luminescence, which was still observable from films left in the dark at room temperature for one week after excitation, and emission color could be varied by changing the trap/emitter molecules. These findings will broadly impact existing applications and provide new prospects for innovative flexible devices.


photostimulated luminescence
charge transfer
magnetic field effects

Supplementary materials

Supplementary Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.