A Sticky Bacterium Versus Antiadhesive Surfaces

16 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The COVID-19 pandemic caused by a virus has been posing a global threat to humanity and human society. It reminded us of the horror of infectious diseases. Pathogenic bacteria also cause infectious disease, but bacteria are not as much of a threat as viruses because antibiotics are effective against them. This is changing, however, with the emergence of antibiotic-resistant bacteria. The global expansion of multidrug-resistant bacteria has become a clinical problem, and the threat of bacterial infection would come back in the near future. The overuse of antibiotics amplifies the opportunity for resistant bacteria to emerge and spread. The increased antibiotic use during this COVID-19 pandemic could also increase the threat of resistant bacteria. As an alternative to antibiotics, antibiofouling surfaces have drawn intensive research interest and have been developed. Acinetobacter sp. Tol 5 exhibits high adhesiveness to various surfaces through AtaA, a member of the trimeric autotransporter adhesin (TAA) family. We examined the adhesion of Tol 5 and other bacteria expressing different TAAs to antiadhesive surfaces. The results highlighted Tol 5’s stickiness through AtaA, which enables cells to adhere even to antiadhesive materials including polytetrafluoroethylene with a low surface free energy, a hydrophilic polymer brush exerting steric hindrance, and mica with an ultrasmooth surface. Tol 5 cells also adhered to a zwitterionic 2-methacryloyloxyethyl-phosphorylcholine-polymer-coated surface but were exfoliated by a weak shear stress, suggesting that exchangeable bound water molecules contribute to AtaA’s interaction with materials.

Keywords

cell adhesion
adsorption
bacteria
antiadhesive materials
protein
autotransporters

Supplementary materials

Title
Description
Actions
Title
SI A sticky bacterium versus antiadhesive surfaces
Description
Actions
Title
Supplementary Movie S1
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.