Site-Specific Modification and Segmental Isotope Labelling of HMGN1 Reveals Long-Range Conformational Perturbations Caused by Posttranslational Modifications

15 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Interactions between histones, which package DNA in eukaryotes, and nuclear proteins such as the high mobility group nucleosome-binding protein HMGN1 are important for regulating access to DNA. HMGN1 is a highly charged and intrinsically disordered protein (IDP) that is modified at several sites by posttranslational modifications (PTMs) - acetylation, phosphorylation and ADP-ribosylation. These PTMs are thought to affect cellular localisation of HMGN1 and its ability to bind nucleosomes; however, little is known about how these PTMs regulate the structure and function of HMGN1 at a molecular level. Here, we combine the chemical biology tools of protein semi-synthesis and site-specific modification to generate a series of unique HMGN1 variants bearing precise PTMs at their N- and C-termini with segmental isotope labelling for NMR spectroscopy. This study demonstrates the power of combining protein semi-synthesis for introduction of site-specific PTMs with segmental isotope labelling for structural biology, allowing us to understand the roles of PTMs with atomic precision, from both structural and functional perspectives.


nuclear magnetic resonance spectroscopy
posttranslational modifications
protein modification
intrinsically disordered proteins
protein semisynthesis
segmental labelling

Supplementary materials

HMGN1 SupplementaryData ChemRxiv


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.