Size-Controlled Preparation of Gold Nanoparticles Deposited on Surface-Fibrillated Cellulose obtained by Citric Acid-Modification

15 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cellulose-based functional materials have gained immense interest due to its low density, hydrophilicity, chirality, and degradability. So far, a facile and scalable preparation of fibrillated cellulose by treating the hydroxy groups of cellulose with citric acid (F-CAC) have been developed, and applied as a reinforcing filler for polypropylene composite. Herein, a size-selective preparation of Au nanoparticles (NPs) stabilized by F-CAC is described. By modifying the conditions of trans-deposition method, established in our group previously, a transfer of Au NPs from poly(N-vinyl-2-pyrrolidone) (PVP) to F-CAC proceeded up to 96% transfer efficiency with retaining its cluster sizes in EtOH. Meanwhile, the deposition efficiency drastically decreased in the case of non-modified cellulose, showing the significance of citric acid-modification. A shift of binding energy at Au 4f core level X-ray photoelectron microscopy (XPS) from 82.0 eV to 83.3 eV indicated that the NPs were stabilized on a F-CAC surface rather than by PVP matrix. The reproducible particle size growth was observed when 2-propanol was used as a solvent instead of EtOH, expanding the range of the available particle size with simple manipulation. The thus-obtained Au:F-CAC nanocatalysts exhibited a catalytic activity toward an aerobic oxidation of 1-indonol in toluene to yield 1-indanone quantitatively, and were recyclable at least 6 times, illustrating high tolerance against organic solvents.

Keywords

gold nanoparticles
surface-fibrillated cellulose
citric acid modification
trans-deposition
aerobic oxidation

Supplementary materials

Title
Description
Actions
Title
Champ celluloseESI 20200913
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.