On the Polymorph-Selective Role of Hydrogen Bonding and π - π Stacking in Para-Aminobenzoic Acid Solutions

14 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Understanding molecular self-association in solution is vital for uncovering polymorph- selective crystal nucleation pathways. In this paper, we combine solution NMR spectroscopy and molecular dynamics simulations to shed light on the structural and dynamical features of para-aminobenzoic acid (pABA) in solution, and on their role in pABA crystals nucleation. pABA is known to yield different crystal forms (α, and β) depending on solvent choice and su- persaturation conditions. NMR reveals that dominant interactions stabilising pABA oligomers are markedly solvent-dependent: in organic solvents, hydrogen bonds dominate, while water promotes π - π stacking. Despite this clear preference, both types of interactions contribute to the variety of self-associated species in all solvents considered. MD simulations support this observation and show that pABA oligomers are short-lived and display a fluxional character, therefore indicating that the growth unit involved in pABA crystallisation is likely to be a single molecule. Nevertheless, we note that the interactions dominating in pABA oligomers are indicative of the polymorph obtained from precipitation. In water, at low pABA concen- trations - conditions that are known to yield crystals of the β form - carboxylic-carboxylic hydrogen bonds are exclusively asymmetric. At higher pABA concentration conditions in which the crystallisation is known to yield the α form - a small but statistically significant fraction of symmetric carboxylic-carboxylic hydrogen-bonded dimers is present. We interpret the presence of these interactions in solvated pABA oligomers as indicative of the fact that a simultaneous and complete desolvation of two carboxylic groups, necessary to form the sym- metric hydrogen-bonded dimer typical of the α crystal form, is accessible, therefore directing the nucleation pathway towards the nucleation of α-pABA.


Molecular Dynamics

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.