Structural Causes of Singlet/triplet Preferences of Norrish Type II Reactions in Carbonyls

11 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Photolysis thresholds are calculated for the Norrish Type II (NTII) intramolecular γ-hydrogen abstraction reaction in 22 structurally informative carbonyl species. The B2GP-PLYP excited state S1 and T1 thresholds agree well with triplet quenching experiments. However, many linear-response methods deliver poor S1 energetics, which is explained by a S1/S0 conical intersection in close proximity to the S1 transition state. Multiconfigurational CASSCF calculations confirm a conical intersection features across all carbonyl classes.

Structure–activity relationships are determined that could be used in atmospheric carbonyl photochemsitry modelling. This is exemplified for butanal, whose NTII quantum yields are too low when used as a ‘surrogate’ for larger carbonyls, since butanal lacks the γ-substitution that stabilises the 1,4- biradical. Reaction on T1 dominates only in species where the S1 thresholds are high — typically ketones. The α, β-unsaturated carbonyls cannot cleave the α–β bond, causing them to photoisomerise. A concerted S0 NTII mechanism is calculated to be viable and may explain the recent detection of NTII photoproducts in the photolysis of pentan-2-one below the T1 threshold.

Keywords

carbonyl
photochemistry
Norrish Type II
conical intersection
atmospheric chemistry
carbonyl photolysis

Supplementary materials

Title
Description
Actions
Title
SI NTII xyz files
Description
Actions
Title
SI Rowell Structural causes of singlet triplet preferences of Norrish Type II reactions in carbonyls
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.