nm-Resolution Functional Pattern Transfer to an Amorphous Elastomeric Material

11 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Here, we show that striped monolayers of diyne amphiphiles, assembled on graphite and photopolymerized, can be covalently transferred to polydimethylsiloxane (PDMS), an elastomer common in applications including microfluidics, soft robotics, wearable electronics, and cell culture. This process creates precision polymer films < 1 nm thick, with 1-nm-wide functional patterns, that control interfacial wetting, reactivity, and adsorption of flexible, ultranarrow inorganic nanowires. The polydiacetylenes exhibit polarized fluorescence emission, revealing polymer location, orientation, and environment, and resist engulfment, a common problem in PDMS functionalization. These findings illustrate a route for controlling surface chemistry well below the length scale of heterogeneity in an amorphous material.


Precision Polymerization
PDMS film
nanopatterning method
2D materials
self-assembled monolayer
polymerizable amphiphile


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.