Catalyst Controlled Regiodivergent C-H Alkynylation of Thiophenes

07 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Alkynes are highly attractive motifs in organic synthesis due to their presence in natural products and bioactive molecules as well as their versatility in a plethora of subsequent transformations. A common procedure to insert alkynes into hetero(arenes), such as the thiophenes studied herein, consists of a halogenation followed by a Sonogashira cross-coupling. The regioselectivity of this approach depends entirely on the halogenation step. Similarly, direct alkynylations of thiophenes have been described that follow the same regioselectivity patterns. Herein we report the development of a palladium catalyzed C–H activation/alkynylation of thiophenes. The method is applicable to a broad range of thiophene substrates. For 3-substituted substrates where controlling the regioselectivity between the C2 and C5 position is particularly challenging, two sets of reaction conditions enable a regiodivergent reaction, giving access to each regioisomer selectively. Both protocols use the thiophene as limiting reagent and show a broad scope, rendering our method suitable for late-stage modification.


C-H Activation

Supplementary materials

Mondal Heteroarene Alkynylation SI


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.