Disorder and Linker Deficiency in Porphyrinic Zr-MOFs: Resolving the Zr8O6 Cluster Conundrum in PCN-221

07 September 2020, Version 1


Porphyrin-based metal-organic frameworks (MOFs), exemplified by the prototypical representatives MOF-525, PCN-221, and PCN-224 are among the most promising MOF systems for catalysis, optoelectronics, and solar energy conversion. However, subtle differences between synthetic protocols for these three MOFs give rise to vast discrepancies in purported product outcomes and description of framework topologies. Here, we reveal the type and disorder of the Zr-clusters based on a comprehensive synthetic and structural analysis spanning local and long-range length scales. Our analysis on PCN-221 reveals Zr6O4(OH)4 clusters in four distinct orientations within the unit cell, rather than Zr8O6 clusters as originally published, accompanied by random linker vacancies around 50%. We propose disordered PCN-224 (dPCN-224) as a unified model to understand PCN-221, MOF-525, and PCN-224 by varying the degree of orientational cluster disorder, linker conformation and vacancies, and cluster—linker binding. Our work thus introduces a new perspective on network topology and disorder in Zr-MOFs and pinpoints the structural variables that direct their functional properties.


metal-organic frameworks (MOFs)
x-ray powder diffraction (XRPD)
Single crystal X-ray diffraction (SCXRD)
Pair distribution function (PDF)
solid-state NMR (SSNMR)

Supplementary materials

SupportingInformation ChemRxiv


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.