Resonance Theory of Vibrational Strong Couplings in Polariton Chemistry

04 September 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this work, we present a new theoretical explanation of the resonance vibrational strong coupling (VSC) regime in polariton chemistry. Coupling molecular vibrations and the cavity photonic excitation has experimentally demonstrated to strongly influence the ground state kinetics of a chemical reaction. Our theoretical results suggest that the VSC kinetics modification originates from the non-Markovian behavior of the cavity radiation mode when coupling to the molecule, leading to the dynamical caging of the reaction coordinate and the suppression of chemical reaction rate for a given range of photon frequency that is close to the barrier frequency. Further, we use a simple analytical non-Markovian rate theory to describe a single molecular system coupled to a radiation mode in an optical cavity. We demonstrate the accuracy of the rate theory by performing a numerical calculation in a one-dimensional model molecular system coupled to the cavity. Our simulations and analytical theory demonstrate the importance of dynamical effects in VSC polaritonic chemistry.

Keywords

Polariton Chemistry
Vibrational Strong Coupling
Cavity Quantum Electrodynamics

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.