Memory of Chirality in Room Temperature Flow Electrochemical Reactor

24 July 2020, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Many chiral compounds have become of great interest to the pharmaceutical industry as they possess various biological activities. Concurrently, the concept of “memory of chirality” has been proven as a powerful tool in asymmetric synthesis, while flow chemistry has begun its rise as a new enabling technology to add to the ever increasing arsenal of techniques available to the modern day chemist. Here, we have employed a new simple electrochemical microreactor design to oxidise an L-proline derivative at room temperature in continuous flow. Electrochemical methods are inherently green and environmentally benign. However, organic electrosynthesis via microflow reactor has number of advantages such as fast reaction’s time, optimization and scale up, safer environment, high selectivities and reduce chances of overoxidation. Flow electrochemical reactor provides high surface-to-volume ratio and reactions are possible to perform in the reactor without a supporting electrolyte due to a very short interelectrode distance. By the comparison of Hofer Moest type electrochemical oxidations at room temperature in batch and flow, we have achieved that continuous flow electrolysis is better than batch electrolysis, producing a good yield (71%) and a better enantiomeric excess (64%). These results show that continuous flow electrolysis has the potential to act as a new enabling technology for asymmetric synthesis to replace some aspects of conventional batch electrochemical processes.

Keywords

Flow electrochemistry
Memory of Chirality
Hofer Moest reaction
Proline
Amino Acid

Supplementary materials

Title
Description
Actions
Title
TOC
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.