Ni-Catalyzed Electrochemical C(sp2)−C(sp3) Cross-Coupling Reactions

07 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Nickel (Ni) catalyzed carbon-carbon (C−C) cross-coupling has been considerably developed in last decades and has demonstrated unique reactivities compared to palladium. However, existing Ni catalyzed cross-coupling reactions, despite success in organic synthesis, are still subject to the use of air-sensitive nucleophiles (i.e. Grignard and organozinc reagents), or catalysts (i.e. Ni0 pre-catalysts), significantly limiting their academic and industrial adoption. Herein, we report that, through electrochemical voltammetry screening and optimization, the redox neutral C(sp2)‒C(sp3) cross-coupling can be accomplished in an undivided cell configuration using bench-stable aryl halide or β-bromostyrene (electrophiles) and benzylic trifluoroborate (nucleophiles) reactants, non-precious, bench stable catalysts consisting of NiCl2•glyme pre-catalyst and polypyridine ligands under ambient conditions. The broad reaction scope and good yields of the Ni-catalyzed electrochemical coupling reaction were confirmed by 48 examples of aryl/β-styrenyl chloride/bromide and benzylic trifluoroborates. Its potential applications were demonstrated by late-stage functionalization of pharmaceuticals and natural amino acid modification. Furthermore, this electrochemical C−C cross-coupling reaction was demonstrated at gram-scale in a flow-cell electrolyzer for practical industrial adoption. Finally, an array of chemical and electrochemical studies mechanistically indicates that electrochemical C−C cross-coupling reaction proceeds through an unconventional radical trans-metalation mechanism.


Ni catalysis
cross coupling
flow cell synthesis
post-stage functionalization
organic halide
organic borate

Supplementary materials

200206-Ni E-Coupling-SI


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.