A Simple Displacement Aptamer Assay on Resistive Pulse Sensor for Small Molecule Detection

25 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


A universal aptamer-based sensing strategy is proposed using DNA modified nanocarriers and Resistive Pulse Sensing for the rapid and label free detection of small molecules. The surface of a magnetic nanocarrier was first modified with a ssDNA aka linker which is designed to be partially complimentary in sequence to a ssDNA aptamer. The aptamer and linker form a stable dsDNA complex on the nanocarriers surface. Upon the addition of the target molecule, a conformational change takes place where the aptamer preferentially binds to the target over the linker; causing the aptamer to be released into solution. The RPS measures the change in velocity of the nanocarrier as its surface changes from dsDNA to ssDNA, and its velocity is used as a proxy for the concentration of the target. We illustrate the versatility of the assay by demonstrating the detection of the antibiotic Moxifloxacin, and chemotherapeutics Imatinib and Irinotecan.


nanopore detection
Resistive pulse sensors
small molecule


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.