Branching Corrected Mean Field Method for Nonadiabatic Dynamics

19 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

When describing nonadiabatic dynamics based on trajectories, severe trajectory branching occurs when the nuclear wave packets on some potential energy surfaces are reflected while those on the remaining surfaces are not. As a result, the traditional Ehrenfest mean field (EMF) approximation breaks down. In this study, two versions of the branching corrected mean field (BCMF) method are proposed. Namely, when trajectory branching is identified, BCMF stochastically selects either the reflected or the non-reflected group to build the new mean field trajectory or splits the mean field trajectory into two new trajectories with the corresponding weights. As benchmarked in six standard model systems and an extensive model base with two hundred diverse scattering models, BCMF significantly improves the accuracy while retaining the high efficiency of the traditional EMF. In fact, BCMF closely reproduces the exact quantum dynamics in all investigated systems, thus highlighting the essential role of branching correction in nonadiabatic dynamics simulations of general systems.

Keywords

Nonadiabatic Dynamics
Mean-Field Ehrenfest Dynamics
Decoherence Correction

Supplementary materials

Title
Description
Actions
Title
XuWang Supporting Information FINAL
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.