Site Selective C-H Functionalization of Mitragyna Alkaloids Reveals a Molecular Switch for Tuning Opioid Receptor Signaling Efficacy

14 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Mitragynine is the most abundant alkaloid component of the psychoactive plant material “kratom”, which according to numerous anecdotal reports shows efficacy in self-medication for pain syndromes, depression, anxiety, and substance use disorders. We developed a new synthetic method for selective functionalization of the unexplored C11 position of the mitragynine scaffold (C6 position in indole numbering) via the use of an indole-ethylene glycol adduct and subsequent iridium-catalyzed borylation. We discovered that C11 represents a key locant for fine-tuning opioid receptor signaling efficacy. In the 7-hydroxymitragynine (7OH) series, the high efficacy parent compound was transformed to an equipotent low efficacy agonist by introducing a fluorine substituent in this position (11-F-7OH), as demonstrated in vitro at both mouse and human mu opioid receptors (mMOR/hMOR) and in vivo in mouse analgesia tests after systemic administration. Low efficacy opioid agonists are of high interest as candidates for generating safer opioid medications with mitigated adverse effects.


C-H activation
selective fnctionalization
iridium-catalyzed borylation
opioid receptor

Supplementary materials

Supplementary Information.07.30.2020


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.