Reversible Switching Between Positive and Negative Thermal Expansion in a Metal-Organic Framework DUT-49

06 August 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Three-dimensional architectures constructed via coordination of metal ions to organic linkers (broadly termed as metal-organic frameworks, MOFs), are highly interesting for many demanding applications such as gas adsorption, molecular separation, heterogeneous catalysis, molecular sensing etc. Being constructed from heterogeneous components, such framework solids show characteristic features from both of the individual components as well as framework-specific features. One such interesting physicochemical property is thermal expansion, which arises from thermal vibration from the organic linker and metal ions. Herein, we show a very unique example of thermal responsiveness for DUT-49 framework, a MOF well-known for its distinctive negative gas adsorption (NGA) property. In the guest-free form, the framework shows another counter-intuitive phenomenon of negative thermal expansion (NTE), i.e. lattice size increase with decrease of temperature. However, in the solvated state, it shows both NTE and positive thermal expansion (i.e. lattice size decreases with lowering of temperature, PTE) based on a specific temperature range. When the solvent exists in liquid form inside the MOF pore, it retains the pristine NTE nature of the bare framework. But freezing of the solvent inside the pores induces a strain, which causes a structural transformation through in-plane bending of the linker and this squeezes the framework by ~10 % of the unit cell volume. This effect has been verified using 3 different solvents where the structural contraction occurs immediately at the freezing point of individual solvent. Furthermore, studies on a series of DUT-49(M) frameworks with varying metal confirm the general applicability of this mechanism.

Keywords

metal-organic frameworks (MOFs)
DUT-49
Flexibility
Negative Thermal Expansion

Supplementary materials

Title
Description
Actions
Title
crystal-structures
Description
Actions
Title
DUT-49-M-temperature-SCD-Supporting information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.