Room Temperature Alkali Metal Reduction of Carbon Dioxide

05 August 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The reduction of the relatively inert carbon–oxygen bonds of CO2 to access useful CO2-derived organic products is one of the most important fundamental challenges in synthetic chemistry. Facilitating this bond-cleavage using earth-abundant, non-toxic main group elements (MGEs) is especially arduous because of the difficulty in achieving strong inner-sphere interactions between CO2 and the MGE. Herein we report the first successful chemical reduction of CO2 at room temperature by alkali metals, promoted by a cyclic(alkyl)(amino) carbene (CAAC). One-electron reduction of CAAC-CO2 adduct (1) with lithium, sodium or potassium metal yields stable monoanionic radicals clusters [M(CAAC–CO2)]n(M = Li, Na, K, 2-4) and two-electron alkali metal reduction affords open-shell, dianionic clusters of the general formula [M2(CAAC–CO2)]n (5-8). It is notable that these crystalline clusters of reduced CO2 may also be isolated via the “one-pot” reaction of free CO2 with free CAAC followed by the addition of alkali metals – a reductive process which does not occur in the absence of carbene. Each of the products 2-8 were investigated using a combination of experimental and theoretical methods.

Keywords

Carbene
Carbon Dioxide
Alkali Metal
Reduction
Small Molecule Activation

Supplementary materials

Title
Description
Actions
Title
CAAC-CO2 Reduction MS
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.