Radical Tropolone Biosynthesis

10 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Non-heme iron (NHI) enzymes perform a variety of oxidative rearrangements to advance simple building blocks toward complex molecular scaffolds within secondary metabolite pathways. Many of these transformations occur with selectivity that is unprecedented in small molecule catalysis, spurring an interest in the enzymatic processes which lead to a particular rearrangement. In-depth investigations of NHI mechanisms examine the source of this selectivity and can offer inspiration for the development of novel synthetic transformations. However, the mechanistic details of many NHI-catalyzed rearrangements remain underexplored, hindering full characterization of the chemistry accessible to this functionally diverse class of enzymes. For NHI-catalyzed rearrangements which have been investigated, mechanistic proposals often describe one-electron processes, followed by single electron oxidation from the substrate to the iron(III)-hydroxyl active site species. Here, we examine the ring expansion mechanism employed in fungal tropolone biosynthesis. TropC, an α-ketoglutarate- dependent NHI dioxygenase, catalyzes a ring expansion in the biosynthesis of tropolone natural product stipitatic acid through an under-studied mechanism. Investigation of both polar and radical mechanistic proposals suggests tropolones are constructed through a radical ring expansion. This biosynthetic route to tropolones is supported by X-ray crystal structure data combined with molecular dynamics simulations, alanine-scanning of active site residues, assessed reactivity of putative biosynthetic intermediates, and quantum mechanical (QM) calculations. These studies support a radical ring expansion in fungal tropolone biosynthesis.


non-heme iron-dependent oxygenase

Supplementary materials

TropC Mechanistic Studies Supplemental Information Final


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.