Physical Chemistry

Ultrafast Pump-Probe Spectroscopy of Finite-Sized Neutral Iron Oxide Clusters

Scott Sayres Arizona State University

Abstract

Neutral iron oxide clusters (FenOm, n,m ≤ 16) are produced in a laser vaporization source using O2gas seeded in He. The neutral clusters are ionized with a sequence of femtosecond laser pulses and detected using time-of-flight mass spectrometry. Small clusters are confirmed to be most prominant in the stoichiometric (n = m) distribution, with m = n + 1 clusters observed above n = 4. Pump-probe spectroscopy is employed to study the dynamics of an electron transfer from an oxygen orbital to an iron nonbonding orbital of iron oxide clusters that is driven by absorption of a 400 nm photon. A bifurcation of the initial wavepacket occurs, where a femtosecond component is attributed to electron relaxation assisted through internuclear vibrational relaxation, and a slow relaxation shows the formation of a bound excited state. The lifetime and relative ratio of the two pathways depends on both the cluster size and iron oxidation state. The femtosecond lifetime decreases with increased cluster size until a saturation timescale is achieved at n > 5. The relative population of the long-lived excited state decreases with cluster size and suggests that the excited electron remains on the Fe atom for > 20 ps.

Content

Thumbnail image of Sayres FeO in ChmRxiv.pdf
download asset Sayres FeO in ChmRxiv.pdf 1 MB [opens in a new tab]

Supplementary material

Thumbnail image of Sayres FeO SI ChmRxiv.pdf
download asset Sayres FeO SI ChmRxiv.pdf 0.80 MB [opens in a new tab]
Sayres FeO SI ChmRxiv