Geometries and Terahertz Motions Driving Quintet Multiexcitons and Ultimate Triplet-Triplet Dissociations via the Intramolecular Singlet-Fissions

07 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Importance of vibronic effects has been highlighted for the singlet-fission (SF) that convert one high-energy singlet exciton into doubled triplet excitons, as strongly correlated multiexcitons. However, molecular mechanisms of spin conversion processes and ultimate de-couplings in the multiexcitons are poorly understood. We have analyzed geometries and exchange couplings of the photoinduced multiexcitons in the pentacene dimers bridged by a phenylene at ortho and meta positions [denoted as o-(Pc)2 and m-(Pc)2] by simulations of the time-resolved electron paramagnetic resonance spectra. We clarified that terahertz molecular conformation dynamics plays a role on the spin conversion from the singlet strongly coupled multiexcitons 1(TT) to the quintet state 5(TT). The strongly coupled 5(TT) multiexcitons are revealed to possess entirely planar conformations stabilized by mutually delocalized spin distributions, while the intramolecular de-coupled spin-correlated triplet pairs generated at 1 microsecond are also stabilized by distorted conformations resulting in two separately localized biradical characters.

Keywords

singlet fission dynamics
quintet state
conformation-switching

Supplementary materials

Title
Description
Actions
Title
JPCL SI PcD-2020 0801
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.