Strain-Based Chemical Sensing Using Metal-Organic Framework Nanoparticles

27 July 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Metal-organic frameworks (MOFs) have received much attention for their potential as chemical sensors, owing to unparalleled tunability of their host-guest response, high uptake and structural flexibility. However, because of the limited compatibility between MOF properties and sensor transduction mechanisms, very few MOFs have successfully been integrated into practical devices. We report the fabrication of the first strain-based sensor constructed from MOF nanoparticles deposited directly onto a membrane-type surface stress sensing architecture, which exhibits unprecedented response times on the order of seconds and ppm-level sensitivity towards volatile organic compounds (VOCs). Finite element analysis is used to demonstrate that the sensor response is a result of analyte-induced strain in the MOF receptor layer. We show that an array of four types of MOF nanoparticles allows for clear discrimination between different classes of VOCs and even individual gases, using principal component analysis of their response profiles. This work opens up the possibility of VOC sensing using a wide range of MOFs, beyond those that are electrically conducting or those that form oriented thin films, with the added advantages of high sensitivity and rapid response compared to existing MOF strain-based sensors.

Keywords

metal–organic framework
sensor
surface stress
nanoparticles
volatile organic compounds
strain

Supplementary materials

Title
Description
Actions
Title
MOF-MSS paper ESI-20200724
Description
Actions
Title
MOF-MSS paper ChemRxiv-20200724
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.