Hybrid Chemo-Biocatalysts Prepared in One Step from Zeolite Nanocrystals and Enzyme-Polyelectrolyte Complexes

03 August 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The combination of heterogeneous catalysts and enzymes, in so-called hybrid catalysts, is an attractive strategy to effectively run chemoenzymatic reactions. Yet, the preparation of such bifunctional materials remains challenging because both the inorganic and the biological moieties must be integrated in the same solid, while preserving their intrinsic activity. Combining an enzyme and a zeolite, for example, is complicated because the pores of the zeolite are too small to accommodate the enzyme and a covalent anchorage on the surface is often ineffective. Herein, we developed a new pathway to prepare a hybrid catalyst built from glucose oxidase and TS-1 zeolite. Such hybrid material can catalyze the in situ formation of H2O2, which is subsequently used by the zeolite to trigger the epoxidation of allylic alcohol. Starting from an enzymatic solution and a suspension of zeolite nanocrystals, the hybrid catalyst is obtained in one step, using a continuous spray drying method. While enzymes are expectedly unable to resist the conditions used in spray drying (temperature, shear stress, etc.), we leverage on the preparation of “enzyme-polyelectrolyte complexes” (EPCs) to increase the enzyme stability. Importantly, the use of EPCs also appears to prevent enzyme leaching and to stabilize the enzyme against pH changes. We show that the one-pot preparation by spray drying gives access to hybrid catalysts with unprecedented performance in the targeted chemoenzymatic reaction. Interestingly, the hybrid catalyst performs much better than the two catalysts operating as separate entities. We anticipate that this strategy could be used as an adaptable method to prepare other types of multifunctional materials.


Hybrid catalysis
spray drying
chemo-enzymatic cascade reaction
aerosol process
protein-polyelectrolyte complexes
Glucose oxidase
TS-1 zeolite

Supplementary materials

Debecker Hybrid GOx-EPCs-TS-1 spray


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.