Rapid Mechanochemical Synthesis of Amides with Uronium-Based Coupling Reagents, a Method for Hexa-amidation of Biotin[6]uril

30 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Solid-state reactions using mechanochemical activation have emerged as solvent-free atom-efficient strategies for sustainable chemistry. Herein we report a new mechanochemical approach for the amide coupling of carboxylic acids and amines, mediated by combination of (1-сyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylaminomorpholinocarbenium hexafluorophosphate (COMU) or N,N,N′,N′-tetramethylchloroformamidinium hexafluorophosphate (TCFH) and K2HPO4. The method delivers a range of amides in high 70–96% yields and fast reaction rates. The reaction protocol is mild, maintains the integrity of the adjacent to carbonyl stereocenters, and streamlines isolation procedure for solid amide products. Minimal waste is generated due to the absence of bulk solvent. We show that K2HPO4 plays a dual role, acting as a base and a precursor of reactive acyl phosphate species. Amide bonds from hindered carboxylic acids and low-nucleophilic amines can be assembled within 90 min by using TCFH in combination with K2HPO4 or N-methylimidazole. The developed mechanochemical liquid-assisted amidation protocols were successfully applied to the challenging couplings of all six carboxylate functions of biotin[6]uril macrocycle with phenylalanine methyl ester, resulting in an 80% yield of highly pure hexa-amide-biotin[6]uril. In addition, fast and high-yielding synthesis of peptides and versatile amide compounds can be performed in a safe and environmentally benign manner, as verified by green metrics.

Keywords

mechanochemistry
solvent-free chemistry
amides
peptides
amide coupling reagents
macrocycle
hemicucurbituril
green metrics

Supplementary materials

Title
Description
Actions
Title
Dalidovich ChemRxiv SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.