A Computational Study of the Relative Aromaticity of Pyrrole, Furan, Thiophene and Selenophene, and Their Diels-Alder Stereoselectivity

30 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The collinearity of terminal p orbitals of a diene with that of a dienophile is required for an effective overlap to result in s bond formation during the Diels-Alder reaction. The ease of the DA reaction of a cyclic diene with a given dienophile, therefore, must also depend on the distance between the termini of the diene. A distance larger than the unsaturated bond of the dienophile is expected to raise the energy of activation. This scenario has been amply demonstrated from the study of reactions of several dienes, some designed to serve the purpose, with different dienophiles. The five-ring heterocycles pyrrole, furan, thiophene and selenophene possess varying aromatic character for the varied resonance participation of the heteroatom lone pair with ring p bonds. The aromaticity decreases in the same order due to: (a) the increasing sC-X (X = heteroatom) bond length lifts the bond uniformity required for ring current, hence aromaticity, such as in benzene and (b) size-mismatch of the interacting lone pair orbital and the ring p orbitals, especially in thiophene and selenophene, both allowing poor overlap in the ground state structures. It is demonstrated that increase alone in the activation energies of the DA reactions of pyrrole, furan, thiophene and selenophene cannot be considered a measure of relative aromaticity as often done and even theoretically attempted in many ways to prove just that. The separation of the termini of the diene has a much larger role in the determination of activation energy, especially in thiophene and selenophene, than their aromaticity profile. There cannot be a measure better than the relative intensity of heteroatom lone pair overlap with ring p bonds, giving rise to a six-electron like system in following Hückel’s 4n+2 rule, to assess the relative aromaticity.

Keywords

relative aromaticity
pyrrole
furan
thiophene
selenophene
Diels-Alder reaction
stereoselectivity

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Actions
Title
cover letter
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.