Enantioselective Aryl-Iodide-Catalyzed Wagner–Meerwein Rearrangements

30 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report a strategy for effecting catalytic, enantioselective carbocationic rearrangements through the intermediacy of alkyl iodanes as stereodefined carbocation equivalents. Asymmetric Wagner–Meerwein rearrangements of β-substituted styrenes are catalyzed by the C2-symmetric aryl iodide 1 to provide access to enantioenriched 1,3-difluorinated molecules possessing interesting and well-defined conformational properties. Hammett and kinetic isotope effect studies, in combination with computational investigations, reveal that two different mechanisms are operative in these rearrangement reactions, with the pathway depending on the identity of the migrating group. In reactions involving alkyl-group migration, intermolecular fluoride attack is product- and enantio-determining. In contrast, reactions in which aryl rearrangement occurs proceed through an enantiodetermining intramolecular 1,2-migration prior to fluorination. The fact that both pathways are promoted by the same chiral aryl iodide catalyst with high enantioselectivity provides a compelling illustration of generality across reaction mechanisms in asymmetric catalysis.

Keywords

Enantioselective
Catalysis
Fluorination
Hypervalent iodine
Cationic Rearrangements

Supplementary materials

Title
Description
Actions
Title
WM SI final
Description
Actions
Title
CIF for compound 3e
Description
Actions
Title
CIF for compound 6
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.