Tungsten-Catalyzed Direct N-Alkylation of Amines with Alcohols

30 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The implementation of earth-abundant metals mediated chemistry is a major goal in homogeneous catalysis. Borrowing hydrogen/hydrogen autotransfer (BH/HA) reaction, as a straightforward and sustainable synthetic method, has attracted considerable attention in the development of earth-abuandant metal catalysts. Herein, we report a tungsten-catalyzed N-alkylation reaction of amines with primary alcohols via BH/HA. This phosphine-free W(phen)(CO)4 (phen=1,10-phenthroline) system was demonstrated as a practical and easily accessible in-situ catalysis for a broad range of amines and alcohols (up to 49 examples, including 16 previously undisclosed products). Notably, this tungsten system can tolerate numerous functional groups, especially the challenging substrates with sterically hindered substituents, or heteroatoms. Mechanistic insights based on experimental and computational studies are also provided.


borrowing hydrogen


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.