Thermally Activated Delayed Fluorescence from Locally Excited State: Theoretical Prediction and Experimental Validation

29 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


As is well known, the thermally activated delayed fluorescence (TADF) is always generated from charge-transfer (CT) excited states in electron-donor (D) – electron-acceptor (A) systems. Here, a novel design strategy is proposed for realizing TADF from a locally excited (LE) state through controlling the intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes between the LE singlet and higher triplet CT states. Based on the strategy, a boron difluoride derivative is theoretically predicted to emit TADF from the LE state, whose radiative decay rate constant is much larger kr (S1 →S0 )=1.12 * 108 s -1 , two orders of magnitude larger than those of common TADF systems. And its lifetimes of the prompt and delayed fluorescence are experimentally validated to be 0.44 ns and 0.7 μs, respectively. This work is a breakthrough in the understanding of TADF and opens a new avenue for extending the TADF materials.


locally excited states
thermally active delayed fluorescence
charge transfer
triplet states

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.