Abstract
Singlet fission has the potential to surpass current efficiency limits in next-generation photovoltaics and to find use in quantum information science. Despite the demonstration of singlet fission in various materials, there is still a great need for fundamental design principles that allow for tuning of photophysical parameters, including the rate of fission and triplet lifetimes. Here we describe the synthesis and photophysical characterization of a novel bipentacene dipyridyl pyrrole (HDPP-Pent) and its Li- and K-coordinated derivatives. HDPP-Pent undergoes singlet fission at roughly 50% efficiency (τSF = 730 ps), whereas coordination in the Li complex induces significant structural changes to generate a dimer, resulting in a 5-fold rate increase (τSF = 140 ps) and near fully efficient singlet fission with virtually no sacrifice in triplet lifetime. We thus illustrate novel design principles to produce favorable singlet fission properties, wherein through-space control can be achieved via coordination chemistry-induced multi-pentacene assembly.
Supplementary materials
Title
DPP-Pent-SI-Rxiv
Description
Actions