Controlling Singlet Fission with Coordination Chemistry-Induced Assembly of Dipyridyl Pyrrole Bipentacenes

28 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Singlet fission has the potential to surpass current efficiency limits in next-generation photovoltaics and to find use in quantum information science. Despite the demonstration of singlet fission in various materials, there is still a great need for fundamental design principles that allow for tuning of photophysical parameters, including the rate of fission and triplet lifetimes. Here we describe the synthesis and photophysical characterization of a novel bipentacene dipyridyl pyrrole (HDPP-Pent) and its Li- and K-coordinated derivatives. HDPP-Pent undergoes singlet fission at roughly 50% efficiency (τSF = 730 ps), whereas coordination in the Li complex induces significant structural changes to generate a dimer, resulting in a 5-fold rate increase (τSF = 140 ps) and near fully efficient singlet fission with virtually no sacrifice in triplet lifetime. We thus illustrate novel design principles to produce favorable singlet fission properties, wherein through-space control can be achieved via coordination chemistry-induced multi-pentacene assembly.


Singlet Fission
Coordination Chemistry
Ultrafast Spectroscopy

Supplementary materials



Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.