Optical Control of Cannabinoid Receptor 2–Mediated Ca2+ Release Enabled By Synthesis of Photoswitchable Probes

28 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cannabinoid receptor 2 (CB2) is a promising target for the treatment of neuroinflammation and other diseases. Howev-er, lack of understanding of its complex signaling in cells and tissues complicates its therapeutic targeting. For the first time we show that HU308 increases cytosolic Ca2+ levels in mammalian cells via CB2 and phospholipase C. We report the synthesis of pho-toswitchable derivatives of CB2 agonist HU308, azo-HU308s, from central building block 3-OTf-HU308. Azo-HU308s enable optical control over CB2 activity with spatiotemporal precision, as demonstrated in real-time Ca2+ fluorescence imaging. Our findings reveal a novel messenger pathway by which HU308 and its derivatives can affect cellular excitability, and demonstrate the utility of chemical photoswitches to control CB2 signaling in real time.

Keywords

cannabinoids
cannabinoid receptor 2
CB2
photopharmacology
Ca2+ signaling
G Protein-Coupled Receptor
gpcr

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.