Synthetic Spider Silk Provides New Insights into the Mechanisms of Flagelliform Silk Fiber Assemble and Elastomeric Behavior

27 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In order to better understand the relationship between the elastomeric behavior of Flagelliform (Flag) spider silks and its molecular structure, it was designed and produced the Nephilengys cruentata Flageliform (Flag) spidroin analogue rNcFlag2222. The recombinant proteins are composed by the elastic repetitive glycine-rich motifs (GPGGX/GGX) and the spacer region, rich in hydrophilic charged amino acids, present at the native silk spidroin. Using different approaches for nanomolecular protein analysis, the structural data of rNcFlag2222 recombinant proteins were compared in its fibrillar and in its fully solvated states. Based on the results and previous published data, it was possible to propose a model for the molecular dynamics of Flag spidroins’ repetitive core, during gland storage and fiber formation, and their contribution to its exceptional mechanoelastic properties. This model assumes that the Flag silk proteins acquire elastomeric behavior through a mechanism similar to collagen proteins, with the repetitive glycine-rich and the spacer regions, together with water, playing important roles in fiber assemble and elastomeric behavior.

Keywords

flagelliform, spider silk, elastomeric proteins, biomaterial

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.