Phosphoryl- and Phosphonium-Bridged Viologens as Stable Two- and Three-Electron Acceptors for Organic Electrodes


Low molecular weight organic molecules that can accept multiple electrons at high
reduction potentials are sought after as electrode materials for high-energy sustainable batteries. To date their synthesis has been difficult, and organic scaffolds for electron donors significantly outnumber electron acceptors. Herein, we report two highly electron deficient phosphaviologen derivatives from a phosphorus-bridged 4,4-bipyridine and characterize their electrochemical properties. Phosphaviologen sulfide (PVS) and P-methyl phosphaviologen (PVM) accept two and three electrons at high reduction potentials, respectively. PVM can reversibly accept 3 electrons between 3-3.6 V vs. Li/Li+ with an equivalent molecular weight of 102 g/(mol e-) (262 mAh/g), making it a promising scaffold for sustainable organic electrode materials having high specific energy densities.


Supplementary material

SI for trication PV final