Phosphoryl- and Phosphonium-Bridged Viologens as Stable Two- and Three-Electron Acceptors for Organic Electrodes

27 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Low molecular weight organic molecules that can accept multiple electrons at high
reduction potentials are sought after as electrode materials for high-energy sustainable batteries. To date their synthesis has been difficult, and organic scaffolds for electron donors significantly outnumber electron acceptors. Herein, we report two highly electron deficient phosphaviologen derivatives from a phosphorus-bridged 4,4-bipyridine and characterize their electrochemical properties. Phosphaviologen sulfide (PVS) and P-methyl phosphaviologen (PVM) accept two and three electrons at high reduction potentials, respectively. PVM can reversibly accept 3 electrons between 3-3.6 V vs. Li/Li+ with an equivalent molecular weight of 102 g/(mol e-) (262 mAh/g), making it a promising scaffold for sustainable organic electrode materials having high specific energy densities.

Keywords

viologen
Phosphorus heterocycles
electron acceptor materials
Organic Radical Cations
Redox Chemistry
energy storage

Supplementary materials

Title
Description
Actions
Title
SI for trication PV final
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.