Linear-Scaling Systematic Molecular Fragmentation Approach for High-Level Coupled-Cluster Methods: Coupled-Cluster Meets Macromolecules

24 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The coupled-cluster (CC) singles and doubles with perturbative triples [CCSD(T)] method is frequently referred to as the “gold standard" of modern computational chemistry. However, the high computational cost of CCSD(T) [O(N7)], where N is the number of basis functions, limits its applications to small-sized chemical systems. To address this problem, efficient implementations of linear-scaling coupled-cluster methods, which

employ the systematic molecular fragmentation (SMF) approach, are reported. In this study: (1) to achieve exact linear-scaling and to obtain a pure ab inito approach, we revise the handling of nonbonded interactions in the SMF approach (2) a new fragmentation algorithm, which yields smaller sized fragments; hence, better fits high-level CC methods is introduced (3) the new SMF approach is integrated with the high-level

CC methods, denoted by LSSMF-CC, for the first time. Performances of the LSSMF-CC approaches, such as LSSMF-CCSD(T), are compared with their canonical versions for a set of alkane molecules, CnH2n+2 (n=6–10), which includes 142 molecules. Our results demonstrate that the LSSMF approach introduces negligible errors compared with the canonical methods, mean absolute errors (MAEs) are between 0.20–0.59 kcal

mol-1 for LSSMF-CCSD(T). To further assess the accuracy of the LSSMF-CCSD(T) approach, we also consider several polyethylene (PE) models. For the PE set, the error of LSSMF-CCSD(T)/cc-pVDZ with respect to the experimental polymerization energies per unit are between 0.08–0.63 kcal/mol. To illustrate the efficiency and applicability of the LSSMF-CCSD(T) approach, we consider an alkane molecule with 10004 atoms. For this molecule, the LSSMF-CCSD(T)/cc-pVTZ energy computation on a Linux cluster with 100 nodes, 4 cores and 5 GB of memory are provided to each node, is performed just in ∼ 24 hours. As far as we know, this computation is an application of the CCSD(T) method on the largest chemical system to date. Overall, we conclude that (1) the LSSMF-CCSD(T) method can be reliably used for large scale chemical systems, where the canonical methods are not computationally affordable (2) the LSSMF-CCSD(T) method is very promising for accurate computation of energies in macromolecular systems (3) we believe that our study is a significant milestone in developing CC methods for large-scale chemical systems.

Keywords

coupled cluster
molecular fragmentation

Supplementary materials

Title
Description
Actions
Title
supportinginfo
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.