COVID-19 Disease: ORF8 and Surface Glycoprotein Inhibit Heme Metabolism by Binding to Porphyrin

19 March 2020, Version 3
This content is a preprint and has not undergone peer review at the time of posting.


The novel coronavirus pneumonia (COVID-19) is an infectious acute respiratory infection caused by the novel coronavirus. The virus is a positive-strand RNA virus with high homology to bat coronavirus. Due to the limits of the existing experimental tools, many protein roles of novel coronavirus including ORF8 are still unclear. Therefore, in the current scene of an emergency epidemic, it is of high scientific significance to predict the biological role of viral proteins through bioinformatics methods. In this study, conserved domain analysis, homology modeling, and molecular docking were used to compare the biological roles of certain proteins of the novel coronavirus. The results showed the ORF8 and surface glycoprotein could bind to the porphyrin, respectively, while orf1ab, ORF10 and ORF3a proteins could coordinately attack heme to dissociate the iron to form the porphyrin. The mechanism seriously interfered with the normal heme anabolic pathway of the human body, being expected to result in human disease. According to the validation analysis of these finds, Chloroquine could prevent orf1ab, ORF3a and ORF10 to attack the heme to form the porphyrin, and inhibit the binding of ORF8 and surface glycoproteins to porphyrins to a certain extent. Therefore, this research is of high value to contemporary biological experiments, disease prevention and clinical treatment.


novel coronavirus
fluorescence resonance energy transfer
virus origin


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.